新闻资讯

新闻中心

当前位置: 首页 > 新闻中心 > 行业新闻

新闻中心News

联系我们Contact Us

金耐源(河南)工业科技有限公司

电 话:0371--86131369

传 真:0371-86593285

邮 箱:jnygmo@163.com

地 址:郑州市中原区银兰路美景M3美立方B2-7栋

怎么防止处理球墨铸铁球化不良原因?

2022-09-02 10:28:51

球墨铸铁是通过球化和孕育处理得到球状石墨,降低了石墨对基体的割裂作用,有效地提高了铸铁的力学性能,获得了较高的塑性、韧性及强度。球墨铸铁是20世纪50年代发展起来的一种高强度铸铁材料,其综合性能接近于钢,正是基于其优异的性能,已成功应用于一些受力复杂,强度、韧性、耐磨性要求较高的零件。球墨铸铁已迅速发展为仅次于灰铸铁的、应用十分广泛的铸铁材料。人们对球墨铸铁性能的要求越来越高。在球墨铸铁生产中可以应用多种球化处理方法,这些球化处理方法各有利弊,需要企业工程师根据实际生产条件合理选择应用。

压力加镁法


由于镁的沸点(1107℃)较低且难溶于铁液,而球化处理时铁液温度可达1500℃,这样一来镁容易在铁液中发生剧烈的反应,导致其较低的吸收率。而当镁周围介质的压力增加时,镁的沸腾温度相应提高,镁的烧损减少,镁的吸收率提高。基于此原理,开发出压力加镁法。根据建压方式的不同,可分为外加压式和自建压力式两种压力加镁法。早期使用的外压式是将盛满铁液的处理包放在密闭的压力罐内,通过压缩空气或氮气来建立所需的压力。另一种是利用镁蒸气在铁液包内自建压力,后者是把纯镁加入密封的铁液包内,镁在铁液包内迅速产生大量镁蒸气,此蒸气通过铁液时一部分被铁液吸收,另一部分逸出并迅速在包内空间建立起与铁液温度相应的饱和蒸气压,这时镁就不再沸腾汽化而损失了。压力加镁法的优点是,使用纯镁进行球化处理,镁的吸收率高,可达70%~80%,且处理过程中无烟尘,劳动环境好。缺点是处理设备要求及费用较高;操作复杂、严格;处理时间长,铁液降温较多;球化处理过程中压力大,容易发生工伤事故。


冲入法


冲入法是目前在国内外应用最广泛的球化处理方法。所使用的处理包通常是堤坝式球化处理包。为了降低铁液和镁之间反应的激烈程度以及镁蒸气的挥发速率,冲入法通常使用含镁量较低的合金球化剂。球化处理时,首先将球化剂装入堤坝一侧,上面覆盖硅铁合金,稍加紧实,然后再覆盖无锈铁屑、钢板或其他覆盖剂。球化处理时,应尽可能地将铁液一次冲入铁液包的另一侧。冲入法镁的吸收率一般为30%~50%。为了提高球化效果,可提高处理包高度与直径的比值;采用低镁合金球化剂;合理的铁液温度和覆盖剂量。冲入法的优点是处理方式和设备简单,容易操作,在生产中有较大的灵活性,所需的技术含量也较低,但不足之处是球化处理过程中镁光、烟尘污染较严重;镁的吸收率较低。


转包法


转包法是GeorgeFischer公司开发并申请专利的一种球化处理方法。该方法用纯镁作球化剂,适用于处理含硫量高的铁液,能使镁的硫化物、硅酸镁等杂质与铁液较好地分离,镁与铁液反应不很剧烈,铁液降温较少,使用安全,镁的吸收率可达60%~80%。具体工艺流程是球化处理前,先将转包横卧,注入定量铁液,然后将球化剂加入反应室,锁紧密闭装置,并盖上包盖。随即转动铁液包将其立放,这时铁液通过反应室上的小孔进入反应室,其流速与小孔的面积和铁液包内的静压力有关。镁受热汽化,在反应室内形成镁蒸气压,当压力超过包内铁液静压时,铁液暂停进入,镁的汽化潜热使反应室内温度下降;蒸气压力也随之下降,铁液再次进入反应室,这种自动调节作用能使镁比较平稳地与铁液反应。转包法球化处理过程中也产生较大镁光和烟尘,并且转包内反应室的小孔易被铁液或熔渣堵塞,清理和保持小孔的尺寸比较麻烦,该球化处理方法难于连续处理铁液。


包芯线喂丝法


包芯线喂丝法起初应用于炼钢工业,随后该技术推广应用于铸造行业。目前,工业发达国家在球墨铸铁件生产中普遍应用喂丝技术,而国内将该技术应用于球墨铸铁的生产起步较晚,在球墨铸铁件生产中尚未普及应用,处于推广阶段。应用喂丝法生产球墨铸铁件,简单来说就是将包有镁及其他合金元素的包芯线直接插入到铁液中对其进行球化处理从而进行球墨铸铁生产,整个球化处理过程可以完全自动化。常用包芯线直径一般为9mm、13mm,内置粉料合金一般含镁量在25%~30%。有特殊需要时还加入一定数量的RE、Ca、Ba等,来改善铸件的性能。喂丝机可以设置喂丝速度、喂丝长度、喂丝模式等参数,处理过程中,喂丝机通过传动机构将包芯线按照设置好的参数配置连续不断地插入到加盖包的处理包铁液中,由于铁液高度所产生的压力作用、包盖隔绝空气的有效流动及包芯线按照一定速度连续插入铁液,这样既可避免镁蒸气的瞬间大量爆发,保证镁合金的安全加入,又可避免镁的大量逸出和烧损,提高镁在铁液中的吸收率。一般来说,合金包芯线的性能和质量,以及喂丝速度和喂丝量是保证喂丝球化处理成功的关键因素。处理包形状、铁液温度、原液水含硫量,以及包盖的密封性等也是影响球化处理效果的重要因素。包芯线喂丝法球化处理的优点是:脱硫脱氧效果好,降温少,放宽了对原铁液的要求;镁的吸收率高并且比较稳定,残留镁含量波动范围较小;球化处理过程中的烟尘和镁光较少;可以实现合金加入量精确和自动化控制。


盖包法


盖包法是由英国铸铁研究协会发明的,在国外球墨铸铁生产中的应用比较广泛。盖包法球化处理时,合金的加入与冲入法相同,然后将包盖安放在处理包上并使其周边密封好,将铁液注入包盖,铁液会通过包盖一侧的铁液注入孔(铁液不得直接对准合金堆放处)流入包内。这样,可使外界的气体与包内完全隔离,减少镁的氧化、烧损,提高镁的吸收率(一般在60%~65%或以上),改善劳动环境。球化反应结束后,去除包盖。盖包法球化效果与盖包铁液注入孔直径选择正确与否有着密切关系。正确的铁液注入孔直径可以保证盖包中保持有一定的铁液高度;铁液全部流入盖包的时间与球化反应时间相同。采用盖包法既保留了冲入法设备简单、容易操作的优点,又克服了冲入法中镁氧化烧损严重、吸收率低、球化剂消耗量大、劳动环境差等缺点。多年来铸造工作者一直在利用盖包法的优点来进行球墨铸铁生产,同时也在不断地努力克服该球化处理方法在使用中的不足之处:包盖起吊困难,操作难度较大;在使用冲天炉连续出铁时,铁液重量难以精确量化。经过不断完善,目前该球化处理工艺得到了广泛的推广应用。


型内法


将球化剂放在浇注系统中专门设计的反应室内,浇注过程中铁液流经反应室时与球化剂发生反应,进行球化处理。为保证球化处理稳定,减少烧损,要严格计算反应室及浇注系统尺寸。一般情况下,反应室设置于直浇道下的横浇道中。型内法镁吸收率高,可达70%~80%,无镁光,无烟尘,无球化衰退,适合于机械化造型的流水线生产。其不足之处是对铁液温度、含硫量、球化剂成分、球化剂块度、反应室尺寸及浇注系统设计都有严格要求,以上这些因素的细微变化都可能引起球化效果的变化。此外,这种方法还容易产生夹渣。


球墨铸铁球化不良17大原因及控制


在20世纪六七十年代,生产球墨铸铁主要是使用冲天炉,由于焦炭质量差(块度大、密度低、固定碳含量低、含硫量);铁液温度低;使用的球化剂制备的方式不完善;生铁的含硫、磷量高等,所以生产出的球墨铸铁的质量较差,球化质量不稳定。现在生产球墨铸铁大都是用电炉熔炼,炉温的高低容易控制;生铁等原材料的质量好;球化剂的种类多且质量好,因此球墨铸铁的质量也比较容易控制。但是球化不良仍是球墨铸铁生产中的主要缺陷之一。


球化不良表现在铸件断口上(一般多观察浇冒口断口),有大块黑斑或明显可见的小黑点;敲击铸件发出的声音不清脆;金相显微组织上有较多的厚片状石墨,有少量球状、团状石墨,或枝晶石墨(有时球化不良在金相上还有一个特征,即在厚片状石墨丛中,个别球状石墨反而还很圆整)。


产生球化不良的原因,总的来讲皆由以下三大类因素所影响:残留镁量或稀土量过低(但稀土含量过高时,则石墨圆整度变差,铸件易产生白口及缩松);孕育作用不强或衰退;干扰元素过高。


但在实际生产过程中,产生球化不良的因素很多,有技术上的问题、有操作上的问题、也有管理上的问题。


1.球化剂质量差


球化剂中Mg、RE含量经化验虽达到质量要求,但因熔炼技术不佳,含MgO较高(球化剂中含MgO>1%,对球化质量就可能有影响),MgO对提高球化质量几乎没有作用,反而使球墨铸铁易产生夹渣缺陷;球化剂里含Ca等元素少,球化处理时反应激烈,Mg烧损较多。

防止措施:不使用质量差的球化剂(要对供应商、生产厂家进行考察,先少量购进,试用后再批量购买)。球化剂放置时间过长,易受潮氧化。


2.炉前球化处理操作不当


球化剂倒入铁液包堤坝挖坑里后,未摊平拍实;表面覆盖物少,或覆盖层薄,或未填满球化剂块缝隙,冲入铁液后,不仅外露球化剂马上熔化反应,同时铁液大量进入球化剂块缝隙里,直接熔化球化剂或把球化剂冲起漂浮铁液表面,反应过早过快,Mg烧损较多。


防止措施:把倒入包底凹坑里的球化剂摊平、适当舂实,再把上面覆盖的孕育硅铁摊平并适当舂实,表面覆盖适当量的球墨铸铁屑(舂实)或一定厚度的球墨铸铁板。这样不仅把合金的缝隙填满,且有一定厚度覆盖层。


3.原铁液含硫量高


硫是主要反球化元素,含硫量高会严重影响球化质量,当原铁液中的wS>0.06%时,即便是加入较多的球化剂,也很难得到合格的球墨铸铁质量。在球化处理过程中,球化剂中的Mg,首先与铁液中的S起化学反应,生成MgS的熔渣,剩余的Mg才起到球化作用,RE同样如此。由于球化元素少,所以影响了球化质量。铁液含硫量高,即便加入大量的球化剂,如果浇注时间过长,扒渣不净,还会发生“返硫”现象,影响浇注到后期的铸件质量。原铁液中硫的主要来源是:使用了含硫量高的焦炭或新生铁。


防止措施:使用含硫量低的生铁及回炉料和焦炭;掌握好球化剂加入量与原铁液含硫量的关系;炉前及球化处理过程中采取脱硫措施(往焦炭上喷洒石灰水、电炉脱硫较为容易、球化包内加入碱面或烧碱)。


随炉料代入的球化干扰元素过高,如Ti、Sb、As、Pb、Al、Sn等。稀土元素虽有一定的消弱或抵消反球化干扰元素的能力,但铁液中含干扰元素太多,仍会恶化石墨球形状(畸形石墨);即便球化,球墨铸铁材质的物理性能也会趋向很脆。因此,在生产QT400—18以及抗低温球墨铸铁时,要选用高纯生铁。


4.接铁液浇包放置不当


出铁时铁液直接冲到压在凹坑里的球化剂上,不仅把覆盖物冲跑,而且使合金块直接受到高温铁液的冲击,或过早熔化激烈反应,或迅速漂浮至铁液表面,在铁液表面熔化烧损被空气吸收,减低了铁液对Mg的吸收率。


防止措施:放置好铁液包的位置,避免铁液直接冲击到合金上,让铁液平稳、快速的淹没合金并瞬时达到一定的深度,延长合金上浮的路程,便于合金充分被铁液吸收。


5.开始出铁液慢


如果开始出铁液过于缓慢,液面在包内上升的速度慢,当铁液淹没合金后,表层部分合金就开始熔化反应,并接着上浮,由于合金表面与铁液表面距离短,合金没来得及熔化就大量的漂浮于铁液表面,Mg在铁液表面熔化烧损被空气吸收而损耗掉,降低了铁液对Mg的吸收率。


防止措施:对于冲天炉来讲前炉缸内要存有充分的铁液,出铁前首先把堵塞出铁口周围的泥巴铲净,出铁时快速打开出铁口,让铁液很快达到铁液包容量深度的2/3(即一定深度),此时的球化反应,由于合金表面距离液面距离大,合金在铁液里上浮时,经过的路程长,合金边上浮、边熔化、边被铁液充分吸收,球化剂中的球化元素Mg的吸收率高,球墨铸铁质量好。电炉出铁更为方便,开始快速出炉,当反应剧烈时慢速出铁或停止出铁,在反应平稳时继续出铁至要求量,如果反应平稳,尽可能先快后慢(中间不停)的一次出完。


6.装加球化剂过早或堤坝凹坑内铁液未倒净


浇注后,红热的浇包底部,温度高于900℃。如果马上装球化剂,Mg、RE在高温的烘烤下损耗一部分(有冒烟现象);若堤坝凹坑内铁液未倒净,Mg的损耗更多;另外过热的预热温度也会促使球化剂的过早熔化。


防止措施:让浇包冷却降温一段时间,在出铁液之前装球化剂,同时,浇注后及时把浇包内剩余的铁液倒干净,并把包内的熔渣扒干净。


7.球化铁液温度过低


球化铁液温度低于1390℃时,合金不易熔化,球化反应不完全,球化级别难以达到要求。球化剂在上浮过程中,由于铁液温度低,不能迅速地把球化剂熔化吸收,致使球化剂上浮到铁液液面熔化燃烧。


8.球化铁液温度过高


球化铁液温度过高,覆盖剂以及球化剂熔化速度过快,由于纯Mg的密度为1.74g/㎝3,熔点651℃,沸点1105℃,即便是由于Mg与Si化合提高了合金的熔点,但也低于1400℃,更何况球化温度常在1490~1520℃,有的可能会更高一些。根据铸件的大小和铸件壁的厚薄,确实需要提高球化温度时,也要采取相对“低温处理高温浇注”的措施。另外,铁液温度过高,铁液往往氧化严重,由于Mg和RE易与氧化物产生化合反应,高温使得Mg、RE的大量损耗和蒸发,降低了吸收率。


9.球化剂块度小、碎末多


当球化剂块度碎小、碎末多时,虽然球化处理方法一样,但由于合金块之间没有空隙,熔化反应只能是剥皮式地缓慢逐层进行,若按同样的步骤去浇注,可能会出现前几箱球化不良,后几箱球化尚好的现象。


防止措施:根据铁液包的大小即球化处理铁液的多少,而选择球化剂块度的大小。碎末过多时需要过筛处理;如果球化反应过慢,可用钢钎穿过铁液捣几下所装的合金,让铁液钻入合金里,以便加快球化反应。


10.球化剂块度过大


球化剂块度过大,在边上浮边熔化过程中,没有及时的被铁液吸收,而是漂浮到铁液表面熔化燃烧,散发到空气中而浪费掉。


球化剂块度的选择,是根据铁液包的大小即球化铁液的多少而确定的。

11.球化剂加入量少


球化剂加入量的多少与材质的要求、铁液的含硫量、铁液质量、球化处理温度、铸件大小等因素有关。球化剂加入量少有两个原因:一是设计要求加入量本身就少;二是出铁液量没有控制好,出的铁液量超过要求。


12.铁液氧化


铁液氧化后含氧量高,由于O和Mg的亲和能力很强,球化剂中的有效球化元素Mg,首先与O化合生产MgO熔渣,剩余的Mg才起到石墨的球化作用,由于氧损耗了大量的Mg,剩余的Mg不足于保证石墨呈球状的量,所以球化级别低,球化质量差。


防止措施:注意冲天炉低焦(炭)高度,防止铁液氧化;电炉熔化,不要使用过于氧化的炉料,防止铁液温度过高或高温长时间的保温,特别是10t大炉熔化铁液,每次球化处理1t,当球化处理后几包时,由于铁液在炉内的停留时间长,不但铁液缺少“晶核”,且易氧化。在球化处理后几包时,先在炉内进行“预处理”,添加适量的碳化硅、脱氧剂、增碳剂、硅铁等进行脱氧处理,并适当多加一些球化剂。


13.包的深径比及包坑


(1)球化包的深度H与直接D的比例为:H/D=1.5~2。如果用球化包处理半包,则违背高经比的初衷。


(2)球化包的包坑深度,在装入球化剂和覆盖剂后应尚余20~30mm,铁液进入包坑与覆盖剂熔融成半固态物质,延缓球化剂过早爆发,可以提高Mg的收得率。


(3)包底凹坑的宽度,以包底直径的1/4~1/3为好,投影面积小的凹坑增加了深度,有利于延缓爆发。


(4)浇注完毕后及时清理包内的熔渣,使每包球化剂装入凹坑的情况相同。


14.因浇注时间过长等原因而产生的球化衰退


球化衰退的特征是:炉前球化良好,在铸件上球化不好;或者同一包铁液,先浇注的铸件球化良好,后浇注的铸件球化情况不好。浇注时间过长产生的球化衰退往往还和孕育衰退并存。保证石墨呈球状化Mg残量的多少,决定了铁液的球化质量。Mg与O以及S的亲和能力很强,Mg与O结合生成MgO而燃烧掉。特别是S,当S与Mg结合生成MgS的熔渣后漂浮到液面,漂浮到液面后MgS熔渣中的Mg,又与空气中的O结合生成MgO而燃烧掉,而分离出的S又返回铁液,又与Mg结合,铁液中的S像小船一样,不停的把铁液中Mg带到空气中燃烧掉,这就叫做“返硫现象”。随着浇注时间的延长,铁液中Mg的残留量越来越少。有资料介绍,随着浇注时间的延长,每延长1min,铁液中Mg的烧损为0.004%。


解决措施:如果因故延长浇注时间,可以覆盖适当厚度的保温剂,减少铁液与空气接触,减少铁液中Mg的烧损量。另外还应采取适当的随流孕育措施,把已经长大并呈畸形(长长后为片状石墨)的石墨分解或截断,使其形状趋于团球状。


15.孕育衰退


通过金相分析可以看到,孕育衰退的金相照片里,石墨球数量少,球径大,密度稀,球化级别低,通常铁素体含量少,珠光体含量增高,并且有碳化物的存在。孕育衰退产生的原因是:孕育剂加入量少,或孕育工艺不完善。由于镁的存在是球化的必要条件,而孕育中的元素,是参与石墨化的充分条件,因此只讲球化处理而不重视孕育处理,是做不成高质量的球墨铸铁的。


防止措施:提高孕育剂的加入量;使用含钡、钙的长效孕育剂;采取二次孕育、浮硅孕育、随流孕育的复合孕育措施。


16.球化包或浇注包潮湿


球化处理冲入铁液时,水经气化分解产生出氢气和氧气,O会中和掉球化剂中的部分Mg,变成了MgO熔渣,不仅降低了铁液中的含镁量,还容易使铸件产生渣孔及气孔缺陷。


17.现场管理


球化剂的管理和堆放不规范,可能会混入硅铁等;称球化剂的重量不准,或没有除皮、或看错称等。例如,某厂球墨铸铁的生产质量一直很稳定,突然有一天夜班前两炉出现球化不良,化验分析含硅量超标,经过研究分析,可能是白天打扫卫生时,把散落到地上的硅铁,整理到球化剂槽中了。另外,球化剂存放时间过长且保管不好,球化剂氧化,都会消弱球化作用,影响球化质量。


以上就是关于球墨铸铁球化处理方法及球化不良原因的知识汇总,球墨铸铁球化处理方法各有其优缺点,希望各球墨铸铁件生产企业能够根据自身生产条件及状况,综合评价每种球化处理方法,扬长避短,选择适于自己的球化处理方法,保证球墨铸造铸铁件质量。

来源:贤集网

免责声明:本文所载内容系网络资料,无法联系版权所有人,如文章文字、图片存在侵权行为,烦请联系我们,我们会予以删除!

“金耐源”品牌创立于 2004 年金耐源产品以优良的品质赢得了良好的市场口碑。经营范围已从普通几类产品发展到拥有造型材料(铸造用球形陶瓷砂、铸造用无机粘结剂、铸造涂料系列)和熔炼材料(冶金炉料、包炉衬材料)等两大系列,近百种产品,在国内外的行业企业中享有盛誉。

标签

近期浏览:

咨询热线:0371-86131369

官网:www.jinnaiyuan.com

地址:郑州市中原区银兰路美景M3美立方B2-7栋


微信公众号

  备案号:豫ICP备2022013359号-1